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Abstract 
 
Most studies on notation-fingering mapping used the 
piano where one finger covers one key to produce one 
tone. This study used the recorder as a model, where 
learning of finger combinations is needed to produce 
one tone. In three simulations, a 13 x 5 x 5 x 10 three-
layer feedforward neural network was required to 
transform a binary spatial representation of a musical 
notation of the chromatic C’ scale on the stave into the 
appropriate fingering output on the ten holes of the 
Soprano recorder. The network could play random 
sequences of tones and  ‘Amazing Grace’ successfully. 
It was not the case that musical notes were gradually 
grouped into large chunks, as assumed, but instead the 
network just grouped pairs of tones and halftones, and 
worked harder on adapting the motor output to the 
properties of the instrument. An initial network with 
few internal nodes learned to keep all fingers down 
(activation), but when the number of internal layer 
nodes matched output nodes, the network could 
develop an activation/inhibition representation in the 
connections between internal layer and output nodes to 
keep fingers down, but also lift them. A robust finding 
in all three network simulations was that the activation 
and inhibition pattern indicating motor flexibility 
showed particularly in the lower part of the Soprano 
Recorder. This was explained with statistical learning, 
as fingers in the lower part of the instrument could stay 
in place for low pitch tones, but needed to be lifted for 
high pitch tones, while in the upper part of the 
instrument, fingers could stay in place most of the time. 
Hence the network systematically developed motor 
flexibility on a localized part of the spatial scale of an 
instrument determined by statistical learning. 
 
1. Introduction 
 
Playing an instrument, like producing a drawing has a 
strong motor component (Braswell & Rosengren, 2008; 
Lange-Küttner, 1998; Lange-Küttner & Vinter, 2008). 
The capacity to draw requires flexibility, which can 
refer to both mental flexibility (Karmiloff-Smith, 
1990), and/or flexibility in fine motor skills (Vinter & 
Perruchet, 2002; Vinter & Marot, 2007). A graphic 
syntax would specify a ‘grammar of action’ (Goodnow 
& Levine, 1973) needed to conceptualize the space on 
the sheet of paper in order find the location from where 
to start with the drawing movement, and how to 

progress (e.g. top-to-bottom, left-to-right) (Vinter, 
Picard, & Fernandes, 2008). Likewise, a traditional 
musical instrument is an object with a particular 
physical design to which the player must adapt his fine 
motor finger movements in order to produce a sound 
(Merrill, 2004). The oldest instrument appears to be the 
flute dating back to the neolithic age (Zhang, Harbottle, 
Wang, & Kong, 1999). The output of a flute is one tone 
at a time, and in this way it is more simplistic than e.g. 
a  piano keyboard where two independent melodies and 
several notes in a chord can be generated by the two 
hands. However, the fingering rules of a flute to 
produce one note are more complex: A keyboard player 
needs to press just one finger in order to produce the 
equivalent of one note in a one-to-one mapping. But to 
achieve the same effect e.g. on a transverse flute or a 
recorder, a combination of several fingers needs to be 
used. Hence, while a flute has the physical constraint 
that it cannot produce chords, it nevertheless requires 
sophisticated fine motor skills to produce just one tone 
and, importantly, these patterns do not always follow a 
logical progression like on the keyboard.  

We were also interested in the weighting of the 
processes involved in music reading vs. motor output. 
What would be the weighting of these two processes in 
successful performance ? Learning motor control is 
assumed to involve the cerebellum in supervised error-
based learning, the subcortical areas of the thalamus 
and basal ganglia in reinforced reward-based learning, 
and neocortical areas in unsupervised learning (Doya, 
2000). Indeed, neuroimaging of piano players vs. non-
musicians showed a large brain network of cortical and 
subcortical areas which contributed to keyboard 
playing, but the largest activated homogeneous brain 
areas were the sensori-motor and the parietal cortex 
(Landau & D'Esposito, 2006; Parsons, Sergent, 
Hodges, & Fox, 2005), indicating great importance of 
fine motor skills in interaction with a spatial layout. 
Piano players showed the same brain networks as non-
musicians who learned to play, but they were more 
intensely used, as they showed increased activation 
while learning, and increased deactivation in repetitive 
performance (Landau & D'Esposito, 2006). 

Nevertheless, a purely sensori-motor account would 
not account for several other effects related to learning 
to play a musical instrument. Kindergarten children 
have shown significant long-term improvements in 
spatial-temporal reasoning ability, but not pictorial 
memory, following music training on the keyboard 
(Bilhartz, Bruhn, & Olson, 1999; Rauscher & Zupan, 



2000). Music making practice could also improve 
verbal memory, but again not visual memory (Chan, 
Ho, & Cheung, 1998; Ho, Cheung, & Chan, 2003). 
This is the more astonishing, as in the mature brain, 
imagining to play an instrument and actually playing on 
it have a large, albeit not complete overlap (Solodkin, 
Hlustik, Chen, & Small, 2004).  

Ockelford (2004) presumed that in the mature adult 
brain, pattern recognition of notes would follow Gestalt 
principles such as similarity and saliency as well as 
categorization. Sight-reading of musical notes may be a 
similar process as reading of words in written language 
(Sergent, Zuck, Terriah, & MacDonald, 1992; Sluming, 
Brooks, Howard, Downes, & Roberts, 2007): In 
reading, the ‘grain size’ of word structure can become 
larger with extended practice (Lange-Küttner, 2005; 
Samuels, Miller, & Eisenberg, 1979; Ziegler & 
Goswami, 2005). Individual differences showed a 
trade-off between neural representations and practice 
effects: There is not only a link of reading disorders 
and motoric hyperactivity in boys (Willcutt, 2000), but 
male keyboard players often had a smaller cerebellar 
brain volume, yet showed large practice effects, while 
female musicians had the larger cerebellar volume, but 
did not show practice effects (Hutchinson, Lee, Gaab, 
& Schlaug, 2003), possibly because of a greater past 
practice history. Thus, the categorization of the musical 
notes by the neural network will be inspected to test 
whether the successful network would have used larger 
groupings of notes. 

Learning to play a musical instrument in children is 
almost never carried out without tuition by a teacher, 
and both reinforcing, or critical, teacher feedback is 
given regularly in music lessons (Duke & Henninger, 
2002; Schmidt, 1995), while self-regulation appeared to 
be inefficient and limited to repetition in children 
(McPherson & Renwick, 2001).  Hence, most children 
may not use motor or visual imagery when learning to 
play an instrument, but would benefit from the exercise 
of mapping the reading of musical notes to an action 
plan involving the development of a sensori-motor 
spatial syntax for the motor output (Haueisen & 
Knösche, 2001; Stewart et al., 2003).   

We thus modelled playing the Soprano recorder in 
several supervised network models, and report both one 
of the initial ones and the successful ones. The 
‘network recorder’ was taught to read the musical 
notations of the chromatic C scale, and translate these 
into key presses. In the current simulation  all notes 
from a low C (C4) to a high C (C5) were used, 
including sharps and flats. A sharp note is one semitone 
higher than it’s natural note, and a flat note is one 
semitone lower. Either a sharp or flat label can be 
applied to a note to produce the same semitone, e.g., Hb 
is sometimes called A#, and both is technically valid.  
 
 

2. Learning to play the recorder 
 
This study used the neural network simulator T-learn 
(McLeod, Plunkett, & Rolls, 1998; Plunkett & Elman, 
1997). This software did not allow to simulate 
unsupervised learning, which may be desirable given 
the importance of independent exploration (Schlesinger 
& Parisi, 2007), but as mentioned before, children 
usually learn to play with error feedback from a music 
teacher. Thus, supervised neural learning with 
backpropagation of error was deemed appropriate. A 
feedforward neural network was designed to model 
learning of fine motor  skills (Iberall & Fagg, 1996). 
 

The network input consisted of 13 input nodes, 
covering C, C#, D, E, Eb, F, F#, G, G#, A, H, Hb and C.  

 
Fig. 1 The Chromatic Scale of C4 to C5 (Eb is noted 
as D# and Hb is noted as A#). 
 
The layered musical notation system of a stave  (see 
Fig. 1) was transformed into a spatial binary pattern of 
13 input nodes (six nodes for five lines plus a ‘help’line 
for the lower C, five nodes for five spaces in between, 
and two nodes to define the tone whenever a note was 
either flat or sharp). The placement of the note on the 
stave was represented by an activation of 1. One input 
node was active at a time, and for C, E, F, G and H 
sharpness or flatness was indicated with a second 
activated input node (see Fig. 2). 
 
1 0 0 0 0 0 0 0 0 0 0 0 0 C 
1 0 0 0 0 0 0 0 0 0 0 0 1 C# 
0 1 0 0 0 0 0 0 0 0 0 0 0 D 
0 0 1 0 0 0 0 0 0 0 0 1 0 Eb 
0 0 1 0 0 0 0 0 0 0 0 0 0 E 
0 0 0 1 0 0 0 0 0 0 0 0 0 F 
0 0 0 1 0 0 0 0 0 0 0 0 1 F# 
0 0 0 0 1 0 0 0 0 0 0 0 0 G 
0 0 0 0 1 0 0 0 0 0 0 0 1 G# 
0 0 0 0 0 1 0 0 0 0 0 0 0 A 
0 0 0 0 0 0 1 0 0 0 0 1 0 Hb 
0 0 0 0 0 0 1 0 0 0 0 0 0 H 
0 0 0 0 0 0 0 1 0 0 0 0 0 C 
L S L S L S L S L S L F Sh 
 
Fig. 2 Data Input of the Pattern Associator Network 
(L = stave line, S = stave space, F = flat, Sh = sharp) 
 

The network had 10 output nodes, corresponding to 
10 holes of the English recorder fingering chart, see 
Fig. 3. The binary coding was 1 for a finger covering a 
recorder hole, and a 0 if a finger was to be kept lifted 
above the hole. The lower the tone on the stave, the 
more holes on the recorder needed to be kept shut. 



 
Fig. 3 Fingering Chart for Soprano Recorder 
(dark dots = finger down, the 10th hole on the back 
is always covered) 
 

An initial 13 x 3 x 3 x 10 three-layer feedforward 
network was identical to the successful neural network 
in Fig. 4, except for 3 instead of 5 hidden nodes in each 
of the two hidden layers. A bias node was connected to 
all hidden layers and the output nodes, but is not 
displayed in the network architecture. The bias node 
ensures that the network stays activated, like some 
ongoing nervous activity in the absence of external 
stimulation. The initial network did already show the 
same categorization of the input, i.e. mostly pairwise 
clustering of tone and semitone in branches of a 
hierarchical tree structure (without illustration), which 
had not become different in the subsequent network 
models with more nodes in the hidden layers. This first 
reported neural network and all subsequent ones were 
trained with a learning rate of 0.1 and a momentum of 
0.9. Seeding was random and the network was trained 
sequentially with replacement. The backpropagation 
RMS error was logged every 100 sweeps.  
 
 

Fig. 4    13 x 5 x 5 x 10 Neural Network Architecture 
(The second hidden layer is displayed besides the 
first hidden layer) 
 

This neural network already learned and the error 
rate was reduced, however, it did not learn the 
semitones, and the error rate did not drop much below 
.50 even with extended practice of 10,000 sweeps, see 
Fig. 5. 
 

 
 
Fig. 5 Error Reduction Display (Learning Curve) of 
a 13 x 3 x 3 x 10 Three-Layer Feedforward Network 
 

Why did this neural network model fail to be really 
successful ? Hinton diagrams (Hinton, 1986) show us 
the activation and inhibition patterns of the connections 
between nodes. Fig. 6 shows the activation patterns 
between input and first layer in the upper left corner, 
between first and second hidden layer in the middle 
square, and the connections between the second hidden 
layer and the output nodes in the lower right rectangle. 
As can be clearly seen in Fig. 6, the connection weights 
of the input nodes i1 to i3 denoting the lowest tones, 
and the i12 and i13 input nodes which defined the 
semitones, with the first hidden layer nodes 1-3 showed 
some inhibition. To a much larger extent this inhibition 
was apparent in the connection weights between first 
and second hidden layer. However, the majority of the 
connections weights between the second hidden layer 
nodes 4 to 6 and the majority of the output nodes 7 to 
16 showed considerable to high activation.  
 

 
Fig. 6 Hinton Diagram (dark squares = inhibition, 
white squares = activation) of the 13 x 3 x 3 x 10 
Three-Layer Feedforward Network after 10,000 
swipes 
 



Hence, these internal representations give the 
impression as if the neural network has established 
some division of labour between the two hidden layers, 
which allowed a very busy motor output.  

However, the error would still did not drop below 
.40 in a 13 x 4 x 4 x 10 three-layer feedforward neural 
network, i.e. when an additional nodes was added to 
each hidden layer, after 10,000 sweeps, even though 
already all semitones except F# were mastered. The 
network needed at least two layers of five hidden nodes 
in order to play all semitones : The neural network 
which successfully learned to match all musical 
notations inclusively all semitones with the appropriate 
fingering on the Soprano recorder was a 13 x 5 x 5 x 10 
feedforward network, see Fig. 7. After 5,000 swipes, 
the error rate had dropped to about .10, a widely 
accepted benchmark for success (Plunkett & Elman, 
1997), see Fig. 5. It appeared to be the case that while 
the first hidden layer in the network would now process 
the lower pitch tones and the semitones in the input 
nodes more correctly, the second hidden layer would 
transform the notation into an appropriate fingering. 
 

 
Fig. 7 Error Reduction Display (Learning Curve)  
 

One of the problems of the networks with fewer 
hidden nodes was that it was difficult to achieve a 
balanced pattern of activation and inhibition in the 
fingering output, i.e. the flexibility to press down a 
finger or keep it lifted. The Hinton diagram in Fig. 6 
now shows a nearly perfect balance of activation and 
inhibition in the connection weights between the nodes 
9 and 10 of the second hidden layer with all output 
nodes, which resembles a representation of the Soprano 
recorder fingering chart, while the remaining nodes of 
the second hidden layer appear to process further 
information about the input. One could presume that 
five hidden nodes were necessary in order to represent 
one half of the Soprano recorder with its ten holes. The 
lower part of the Soprano recorder, which is mainly 
served by the right hand in ‘real life’, appeared to 
trigger an especially strong balanced activation pattern. 
 

 
 
Fig. 8 Hinton Diagram (dark squares = inhibition, 
white squares = activation) of the 13 x 5 x 5 x 10 
Three-Layer Feedforward Network after 5,000 
swipes 
 

The same simulation was run a second time in order 
to replicate this finding. The activation-inhibition 
balance in the lower part of the recorder was now 
moved from nodes 9 to 10 (on the right) in the second 
hidden layer to nodes 6 to 7 (on the left) in the second 
hidden layer, see Fig. 7. One could even presume, that 
while in the first simulation, the lower part of the 
Soprano recorder was served by one hand, in the 
second simulation, these operations were carried out by 
the other hand. The middle part of the Soprano 
recorder, which was already activated in the first 
simulation, had now become even more activated in the 
replication, and this had broken up the vertical 
continuity of the representation of the fingering chart in 
the connection weights.  
 

 
 
Fig. 9 Replication: Hinton Diagram (dark squares = 
inhibition, white squares = activation) 



To test the neural network further, the trained 
network was given a longer input pattern which 
represented the sequence of the musical notes in the 
song ‘Amazing Grace’, using the same notation as in 
the training file. However, this time there was no 
teacher file in the simulation, which before had 
specified the matching fingering pattern for each 
musical notation of a tone on the C-octave. Fig. 10 
shows that the trained neural network initially showed a 
slightly higher error, but could successfully produce the 
correct fingering for the Soprano recorder to play the 
tune ‘Amazing Grace’. 
 

 
 
Fig. 10 Error Reduction Display  (Learning Curve) 
for the trained Neural Network reading the musical 
notation and playing ‘Amazing Grace’ on a Soprano 
Recorder  
 

The Hinton diagram (Fig. 11) shows that connection 
weights from the second hidden layer to the output 
layer were again well balanced in terms of inhibition 
and activation in the lower part of the fingering chart, 
but in a reversed fashion compared to the replication. 
The middle part now also shows more finger flexibility.  
 

 
 
Fig. 11 Hinton Diagram of the trained Neural 
Network which learned to play ‘Amazing Grace’  

Discussion 
 
The current pattern associator networks demonstrated 
that the networks learned to read a binary musical 
notation and to produce the correct fingering in the 
output. The network did not categorize the notes into 
larger chunks when it became more successful in error 
reduction, it only grouped tones with halftones in a 
pairwise fashion. Instead, it was necessary to design as 
many internal hidden layer nodes as there were output 
nodes (Soprano recorder holes). With this architecture 
the network could develop a finger activation and 
inhibition system in the connections between internal 
representations and the motor output which allowed the 
network to ‘lift a finger’. 

The input was conceptualized as a binary spatial 
pattern of the stave, where the musical notation 
indicated the pitch of the tone (the lower on the stave in 
spatial terms, the lower the pitch of the tone in auditory 
terms), as well as whether the tone was a semitone or 
not, and whether the tone was flat or sharp. The 
architecture was a three-layer feedforward network 
with 10 output nodes representing the 10 holes of the 
Soprano recorder. It was assumed that the first hidden 
layer in the network would allow to categorize the 
input, while the second hidden layer would transform 
the musical notation into a motor output on the 
instrument. 

An initial, less successful neural network showed 
high inhibition in the first hidden layer, and high 
activation in the second hidden layer connected to the 
output. This would imply that the network learned to 
cover the holes of the Soprano recorder, but produced a 
high amount of errors. That the subsequently successful 
networks needed 5 hidden nodes each in the two hidden 
layers may have to do with the segmentation of the 
recorder into a lower and an upper part with 5 holes 
each, served by one hand each, respectively. Three 
simulations were run with this 13 x 5 x 5 x 10 network, 
the original simulation, a replication of this training 
study, and an application of the training to the tune 
‘Amazing Grace’. To reduce errors, the network 
learned fine motor skills, i.e. in particular the flexibility 
to not just press fingers down, but also to keep some 
fingers lifted. The network had achieved this objective 
successfully in all three network simulations by paying 
attention to the lower part of the Soprano recorder, 
where activation and inhibition were well balanced. 
This indicated a localized motor flexibility of finger 
pressing and finger lifting. And indeed, when playing 
the Soprano recorder, the production of the tones with 
lower pitch requires pressing the fingers down on both 
parts of the recorder, e.g. playing the lower C requires 
all holes covered and all fingers down. However, the 
tones which are higher in pitch most often require 
lifting fingers only on the lower part of the instrument, 
while the fingers in the upper part are more likely to 
stay in place. Thus, when playing music on the 



recorder, it is statistically more likely that the fingers 
on the lower part of the instrument need lifting than the 
fingers on the upper part of the instrument. Hence, 
while motor output as such required ‘just’ activation of 
internal representations, the development of motor 
flexibility required statistical spatial learning (e.g. 
Fiser, Scholl, & Aslin, 2007).  

In summary, the networks needed to segment the 
upper and the lower part of the Soprano recorder, 
started to develop motor flexibility where the most 
frequent finger lifts where required and then after 
training, finger flexibility appeared to gradually extent 
with practice upwards across the recorder to holes 
where fewer finger lifts were required. Without this 
upper/lower segmentation the neural network appeared 
to produce a motor output (keeping holes covered), 
without developing a syntax (Vinter et al., 2008), i.e. 
being able to know where and how to start with error 
reduction (which holes not to cover). Anecdotal 
evidence of music teachers did indeed confirm that 
young children find it difficult to keep all fingers down 
to cover the holes completely, i.e. without producing an 
air leak which would distort the tone, before flexibility 
and ease of finger movement develops. 

Another important aspect was that the network 
could swap the left and right hand side, as if it was 
once a right hander and once a left hander. This 
corresponded to a neural network which also showed 
little spatial side bias when searching for an object on 
the left and the right hand side of a spatial display 
(Lange-Küttner, in press; Thelen, Schöner, Scheier, & 
Smith, 2001). Also musicians showed varying spatial 
bias (Landau & D'Esposito, 2006) and increased inter-
hemispheric connectivity via an enlarged corpus 
callosum (Ridding, Brouwer, & Nordstrom, 2000), 
especially in male mature musicians (Lee, Chen, & 
Schlaug, 2003), as they might have had to counteract a 
usually more lateralized male brain.   

Furthermore, chunking of musical notes did not 
occur except for pairing of tones and semitones. 
Keeping notes relatively individual could have been a 
reaction towards the task to play repetitively sequenced 
notes, but chunking also did not emerge when the 
network played a tune where notes followed a melodic 
sequence. Instead the network worked harder to adapt 
the motor output to the properties of the instrument, as 
instead the finger placements needed grouping to 
produce a single tone. This adaptation process towards 
the instrument as an object with physical constraints is 
often underestimated. Merrill (2004, p.29) comments 
on previous neural network modelling that ‘an 
interesting pattern in the existing body of work is the 
minimal attention paid to the form of the physical 
device in these learning and classifying systems’. He 
found that people were conservative about the setting 
of their synthesizers, and musicians would develop a 
special relationship with their instrument, e. g. BB 
King would name his favourite guitar ‘Lucille’ and Yo 
Yo Ma his cello ‘Petunia’ (Merrill, 2004, p. 31). It may 

be that the longevity of motor memory (Baddeley, 
1999) developed in interaction with the physical 
specificities of an instrument contributes substantially 
to this perception. The importance of motor processes 
was also obvious in a differential training of 
trombonists students, where not surprisingly, either 
motor or mental practice was better than no practice, 
but more importantly, a combination of both motor and 
mental practice was better for performance than mental 
practice alone (Ross, 1985). Mastering random (as in 
modern music) and logical sequences  (as in traditional 
music) is more demanding than producing repetitive 
and relatively monotonous motor sequences (Landau & 
D'Esposito, 2006, p. 256) in pianists. However, the 
current recorder networks needed to learn complex 
synchronous fingering combinations even though the 
repetitive, gradually ascending-in-pitch sequence of 
tones was relatively easy, and having mastered this, did 
not need to develop notational categorizations to play 
the relatively predictable melodic phrases of ‘Amazing 
Grace’. Piano players would be equally challenged with 
regards to complex fingering combinations only when 
playing chords, and then clustering of musical notes 
would become necessary. 

Toomela (2002) showed in a large developmental 
study that astonishingly the only significant new 
predictor for drawing advanced visually realistic 
objects were fine motor skills which replaced 
chronological age as performance predictor. Fine motor 
skills might also be correlated with attention to fine 
detail (Lange-Küttner, 2000), e.g. females pay more 
attention to fine detail in drawing, which leads to better 
performance in contour drawing of small parts (Lange-
Küttner, Kerzmann, & Heckhausen, 2002), but also in 
mental rotation where it leads to lower performance 
than in males, as vector rotation is required (Geiser, 
Lehmann, & Eid, 2006; Hughdahl, Thomsen, & 
Ersland, 2006). Vectors are spatial axes which segment 
space independently of individual locations in a linear 
fashion (Lange-Küttner, 1997, 2004, 2008). It seems 
that this current neural network required both, 
flexibility in the control fine motor movement, but 
applied to a localized part of a spatial axis identified by 
its statistical properties, i.e where action affordances 
were clustered. 
 
References 
 
Baddeley, A. D. (1999). Essentials of human memory. 

Hove, UK: Psychology Press. 

Bilhartz, T. D., Bruhn, R. A., & Olson, J. E. (1999). 
The effect of early music training on child 
cognitive development. Journal of Applied 
Developmental Psychology, 20(4), 615-636. 

Braswell, G., & Rosengren, K. (2008). The interaction 
of biomechanical and cognitive constraints in the 
production of children's drawing. In C. Lange-



Küttner & A. Vinter (Eds.), Drawing and the non-
verbal mind: A life-span perspective (pp. 129-144). 
Cambridge: Cambridge University Press. 

Chan, A. S., Ho, Y.-C., & Cheung, M.-C. (1998). 
Music training improves verbal memory. Nature, 
396, 128. 

Doya, K. (2000). Complementary roles of basal ganglia 
and cerebellum in learning and motor control. 
Current Opinion in Neurobiology, 10, 732-739. 

Duke, R. A., & Henninger, J. C. (2002). Teachers' 
verbal corrections and observers' perception of 
teaching and learning. Journal of Research in 
Music Education, 50, 75-87  

Fiser, J. z., Scholl, B. J., & Aslin, R. N. (2007). 
Perceived object trajectories during occlusion 
constrain visual statistical learning. Psychonomic 
Bulletin & Review, 14(1), 173-178. 

Geiser, C., Lehmann, W., & Eid, M. (2006). Separating 
'Rotators' From 'Nonrotators' in the Mental 
Rotations Test: A Multigroup Latent Class 
Analysis. Multivariate Behavioral Research, 41, 
261-293. 

Goodnow, J., & Levine, R. A. (1973). The grammar of 
action: sequence and syntax in children's copying 
behaviour. Cognitive Psychology, 4, 82-98. 

Haueisen, J., & Knösche, T. R. (2001). Involuntary 
motor activity in pianists by music perception. 
Journal of Cognitive Neuroscience, 13, 786-792. 

Hinton, G. E. (1986). Learning distributed 
representations of concepts. Paper presented at the 
Proceedings of the 8th Annual Conference of the 
Cognitive Science Society, Amherst. 

Ho, Y.-C., Cheung, M.-C., & Chan, A. S. (2003). 
Music training improves verbal but not visual 
memory: Cross-sectional and longitudinal 
explorations in children. Neuropsychology, 17, 
439-450. 

Hughdahl, K., Thomsen, T., & Ersland, L. (2006). Sex 
differences in visuo-spatial processing: An fMRI 
study of mental rotation. Neuropsychologia, 44(9), 
1575-1583. 

Hutchinson, S., Lee, L. H.-L., Gaab, N., & Schlaug, G. 
(2003). Cerebellar volume of musicians. Cerebral 
Cortex, 943-949. 

Iberall, T., & Fagg, A. H. (1996). Neural network 
models for selecting hand shapes. In A. M. Wing, 
P. Haggard & J. R. Flanagan (Eds.), Hand and 
brain. The neurophysiology and psychology of 
hand movements (pp. 243-264). San Diego, CA: 
Academic Press. 

Karmiloff-Smith, A. (1990). Constraints on  
representational change: Evidence from children's 
drawings. Cognition, 34, 57-83. 

Landau, S. M., & D'Esposito, M. (2006). Sequence 
learning in pianists and nonpianists. An fMRI 
study of motor expertise. Cognitive, Affective & 
Behavioral Neuroscience, 6, 246-259. 

Lange-Küttner, C. (1997). Development of size 
modification of human figure drawings in spatial 
axes systems of varying complexity. Journal of 
Experimental Child Psychology, 66, 264-278. 

Lange-Küttner, C. (1998). Pressure, velocity and time 
in speeded drawing of basic graphic pattern by 
young children. Perceptual and Motor Skills, 86, 
1299-1310. 

Lange-Küttner, C. (2000). The role of object violations 
in the development of visual analysis. Perceptual 
and Motor Skills, 90, 3-24. 

Lange-Küttner, C., Kerzmann, A., & Heckhausen, J. 
(2002). The emergence of visually realistic contour 
in the drawing of the human figure. British Journal 
of Developmental Psychology, 20, 439-463. 

Lange-Küttner, C. (2004). More evidence on size 
modification in spatial axes systems of varying 
complexity. Journal of Experimental Child 
Psychology, 88, 171-192. 

Lange-Küttner, C. (2005). Word structure effects in 
German and British reading beginners. Zeitschrift 
für Pädagogische Psychologie/German Journal of 
Educational Psychologie, 19, 207-218. 

Lange-Küttner, C. (2008). Figures in and out of 
context: Absent, simple, complex and halved 
spatial fields. In C. Lange-Küttner & A. Vinter 
(Eds.), Drawing and the non-verbal mind. A life-
span perspective (pp. 199-220). Cambridge: 
Cambridge University Press. 

Lange-Küttner, C. (in press). When one is really two: 
Switching from object to place memory in the A-
Not-B search task European Journal of 
Developmental Science. 

Lange-Küttner, C., & Vinter, A. (Eds.). (2008). 
Drawing and the non-verbal mind: A life-span 
perspective. Cambridge: Cambridge University 
Press. 

Lee, D. J., Chen, Y., & Schlaug, G. (2003). Corpus 
Callosum: musician and gender effects. 
NeuroReport, 14, 205-209. 

McLeod, P., Plunkett, K., & Rolls, E. T. (1998). 
Introduction to connectionist modelling of 
cognitive processes. New York, NY, US: Oxford 
University Press. 



McPherson, G. E., & Renwick, J. M. (2001). A 
longitudinal study of self-regulation in children's 
musical practice. Music Education Research, 3, 
169-186. 

Merrill, D. J. (2004). FlexiGesture: A sensor-rich real-
time adaptive gesture and affordance learning 
platform for electronic music control. 
Massachusetts Institute of Technology, 
Cambridge, MA. 

Ockelford, A. (2004). On similarity, derivation and the 
cognition of musical structure. Psychology of 
Music, 32(1), 23-74. 

Parsons, L. M., Sergent, J., Hodges, D. A., & Fox, P. T. 
(2005). The brain basis of piano performance. 
Neuropsychologia, 43, 199-215. 

Plunkett, K., & Elman, J. L. (1997). Exercises in 
rethinking innateness. A handbook for 
connectionist simulations. Cambridge, MA: MIT 
Press. 

Rauscher, F. H., & Zupan, M. A. (2000). Classroom 
keyboard instruction improves kindergarten 
children's spatial-temporal performance: A field 
experiment. Early Childhood Research Quarterly, 
15(2), 215-228. 

Ridding, M. C., Brouwer, B., & Nordstrom, M. A. 
(2000). Reduced interhemispheric inhibition in 
musicians. Experimental Brain Research, 133, 
249-253. 

Ross, S. L. (1985). The effectiveness of mental practice 
in improving the performance of college 
trombonists. Journal of Research in Music 
Education, 33(4), 221-230. 

Samuels, S. J., Miller, N. L., & Eisenberg, P. (1979). 
Practice effects on the unit of word recognition. 
Journal of Educational Psychology, 71, 514-520. 

Schlesinger, M., & Parisi, D. (2007). Connectionism in 
an artificial life perspective: simulating motor, 
cognitive, and language development. In D. 
Mareschal, S. Sirois, G. Westermann & M. H. 
Johnson (Eds.), Neuroconstructivism. Vol. 2, 
Perspectives and Prospects (pp. 129-158). Oxford: 
Oxford University Press. 

Schmidt, C. P. (1995). Attributions of success, grade 
level, and gender as factors in choral students' 
perceptions of teacher feedback. Journal of 
Research in Music Education, 43, 313-329. 

Sergent, J., Zuck, E., Terriah, S., & MacDonald, B. 
(1992). Distributed neural network underlying 
sight-reading and keyboard performance. Science, 
257, 106-109. 

Sluming, V., Brooks, J., Howard, M., Downes, J. J., & 
Roberts, N. (2007). Broca's area supports enhanced 
visuospatial cognition in orchestral musicians. The 
Journal of Neuroscience, 27, 3799-3806. 

Solodkin, A., Hlustik, P., Chen, E. E., & Small, S. 
(2004). Fine modulation in network activation 
during motor execution and motor imagery. 
Cerebral Cortex, 14, 1246-1255. 

Stewart, L., Henson, R., Kampe, K., Walsh, V., Turner, 
R., & Frith, U. (2003). Brain changes after learning 
to read and play music. NeuroImage, 20, 71-83. 

Thelen, E., Schöner, G., Scheier, C., & Smith, L. B. 
(2001). The dynamics of embodiment: A field 
theory of infant perseverative reaching. Behavioral 
and Brain Sciences, 24, 1-34. 

Toomela, A. (2002). Drawing as a verbally mediated 
activity: A study of relationships between verbal, 
motor, and visuospatial skills and drawing in 
children. International Journal of Behavioural 
Development, 26, 234-247. 

Vinter, A., & Perruchet, P. (2002). Implicit motor 
learning through observational training in adults 
and children. Memory & Cognition, 30(2), 256-
261. 

Vinter, A., & Marot, V. (2007). The development of 
context sensitivity in children's graphic copying 
strategies. Developmental Psychology, 43, 94-110. 

Vinter, A., Picard, D., & Fernandes, V. (2008). Graphic 
syntax and representational development. In C. 
Lange-Küttner & A. Vinter (Eds.), Drawing and 
the non-verbal mind. A life-span perspective (pp. 
145-163). Cambridge: Cambridge University 
Press. 

Willcutt, E. G. (2000). Comorbidity of reading 
disability and attention hyperactivity disorder. 
Journal of Learning Disabilities, 33, 179-191. 

Zhang, J., Harbottle, G., Wang, C., & Kong, Z. (1999). 
Oldest playable musical instruments found at Jiahu 
early Neolithic site in China. Nature, 401, 366-
368. 

Ziegler, J. C., & Goswami, U. (2005). Reading 
acquisition, developmental dyslexia, and skilled 
reading across languages: A psycholinguistic grain 
size theory. Psychological Bulletin, 131(1), 3-29. 

 
 


